
LLMs for the “GPU-Poor”
Franck Nijimbere

Founder @GoAgentic

Intro to Large Language Models (LLMs)

An LLM is a type of neural network that
specializes in processing, understanding,
and generating human language.

Eg. llama-2-70 b

Intro to Large Language Models (LLMs)

There are two main components of an LLM:

1. the parameters: model weights
2. the code to run the parameters

Given a sequence of words, the LLM predicts the next
word.

● This requires parameters/ the network to learn a lot
about the world

● All of this info is compressed into the parameters

LLM Training: Step1: Model Pre-training
This involves:

1. Taking chunks of the internet collected
through crawling (~10TB of text)

2. Using a GPU cluster to compute
parameters (6,000 GPUs for 12 days,
~1e24 FLOPS)

3. Compressing these large amounts of
text with lossy compression (~140 GB
file)

** values for llama-2-70b, it’s important to
note that these values are ~10x worse than
current leading models*

To start, we create a base model by learning from a labeled dataset. This process is extremely expensive and usually
only done ~1/year.

LLM Training: Step2: Model Fine-tuning
This involves:

1. Writing labeling instructions
1. note: Labeling used to be done by

humans. Now, it is increasingly
completed by LLMs.

2. Creating a dataset of ~100k high quality
specific texts (ex: use ScaleAI)

3. Fine-tuning the base model on this dataset
(~1 day)

4. Evaluating and monitoring misbehaviors

E.g Assistant model like ChatGPT
- Fine-tune the model on Q/A <user: query> + <assistant:

answer> pair formatted data

We take our general base model and tune it to a specific domain and purpose. Unlike pre-training which requires billions of examples,
fine-tuning only requires a few hundred domain specific examples.

Model Training vs Model Fine-tuning

Priority Data Format

Stage 1 Prioritizes data quantity
(requires ~10,000 x more
than Stage 2)

general internet documents

Stage 2 Prioritizes data quality and
specificity

more specific text format and
contents

LLM Training: Step3: Model Inference
How does this work exactly?

The network “dreams” documents. Every-time it generates a new word, this word is fed back
in to generate the next word. This allows the network to iteratively build words, and then
sentences, and then paragraphs.

However, the model isn’t always correct. There is always a risk of hallucinations.

Hallucinations are generated text or responses that are incorrect, fictional, or misleading.
This is currently a big problem with LLMs and can be caused by:

1. The LLM was trained on outdated or incorrect information.
2. The LLM was trained on biased or discriminatory training data.
3. The LLM doesn’t have access to real-time, real-world information.

LLM scaling laws

We can significantly, and predictably improve LLM performance just by increasing
the # of parameters and the amount of training data.

This is very important because:

● It’s a very easy and clear path for improvement
● It’s why people are rushing to obtain more data and GPUs

GPU cost

NVIDIA A100 ~ $27K

GPU-Poor

GPU-Poor

On-device inference

The main goal of llama.cpp is to run the
LLaMA model using 4-bit integer
quantization on a MacBook

LLM Optimization: Model Pruning

For example, SparseGPT claims their algorithm can prune models by 50% without retraining.

https://github.com/IST-DASLab/sparsegpt

LLM Optimization: Model Quantization

Quantization (post-training) — Normalize and round
the weights. No retraining is needed.

Mixed precision — Using a combination of lower
(e.g., float16) and higher (e.g., float32) precision
arithmetic to balance performance and accuracy.

LLM Optimization: Low-rank factorization

LoRa (Low-Rank Adaptation of Large Language Models) — A method to
reduce the model size and computational requirements by
approximating large matrices using low-rank decomposition.

Fine-tune LLMs for a few dollars

Final words

Lots of opportunities for the GPU-Poor:

- Restrict the domain (fine-tune models): model for kwatura, generating
Burundian proverbs, generating ibisokozo

- Dispatch multiple smaller models, each specialised in a sub-task, to improve
overall performance: GoAgentic.

- Improve optimization techniques for the GPU-poor.

